

TRAUMA ANESTHESIA

Howard J. Miller, M.D.

- Introduction
- Initial Evaluation
- Preparation
- Treatment
- End Points of Resuscitation

- United States-Fourth leading cause of death.
- Until age 44 yrs.-leading cause of death.
- 15-24 yrs.-77% of all deaths.
- 3.5-4.0 million years of potential life lost/year
- Greater than \$100 billion in medical and other expenses.

Introduction

- Trauma: (Greek) an injury to living tissue caused by an extrinsic agent.
 - Blunt (majority)
 - Penetrating
 - Thermal
 - Chemical
 - Ionizing radiation
 - Nuclear radiation
 - etc.

Mortality

- Trimodal Distribution
 - <u>1st hour</u>: 50% of all deaths secondary to CNS or great vessel injury-not amendable to treatment.
 - <u>1-4 hours</u>: 30% of all deaths due to CNS or hemorrhage-early intervention is of benefit.
 - <u>1-6 weeks</u>: 20% of all deaths due to multi-organ failure and/or sepsis.

- ATLS-Advanced Trauma Life Support
 - American College of Surgeons
 - Early systematic approach to the injured patient.
 - Improves overall survival by reducing incidence of missed injuries and under resuscitation

Initial Evaluation

ATLS

- Preparation
- Triage
- Primary Survey (ABC's)
- Resuscitation
- Secondary Survey ("head to toe")
- Further resuscitation and evaluation
- Definitive Care

- Care team
 - Attending Anesthesiologist
 - Anesthesia resident and/or CRNA
 - Surgeon
 - Anesthesia Technician
 - Operating room nurses
 - Pathology

The Care Team In Action

- Operating Room Set-Up
 - Optimal readiness
 - Cost effectiveness
 - Final room preparation

Swank Getting Ready For a Torn Thoracia A Thoracic Aorta

GOALS

- Secure the airway
- Ventilation and oxygenation
- Maintenance of hemodynamics
- Maintain organ perfusion
- Euthermia
- Coagulation
- Achieve end point(s) of resuscitation

- Patient Preparation
 - Oxygen
 - Standard monitors
 - Intravenous access
 - Invasive monitoring

Treatment

- Airway
 - If intubated, *confirm* proper endotracheal tube placement.
 - Not intubated, secure the airway.
 - Rapid Sequence Induction (always a full stomach)
 - Modified Rapid Sequence Induction
 - Awake intubation
 - Cricothyroidotomy/tracheostomy
 - Other-Always suspect c-spine injury

Bad Looking Airway

Do the Right Thing

- Fluid Administration
 - NS versus LR (plasmalyte, etc.)
 - Colloid versus crystalloid
 - Hespan, Hextend, Albumin
 - Blood Products

- Fluid Administration
 - Pressure bags
 - Hotline
 - Level 1 System
 - Rapid Infusion System

Level 1 – The Work Horse

- Shock (ATLS): Abnormality of the circulatory system that results in inadequate organ perfusion and oxygenation.
- Resuscitation is complete when:
 - Tissue acidosis is eliminated
 - Aerobic metabolism is restored
 - Oxygen debt has been repaid

- Adequate resuscitation does NOT equal "normal" vital signs, (i.e. compensated shock).
- Scalea (1994) and Abou-Khalil (1994): 80-85% of trauma patients had evidence of inadequate resuscitation despite normal blood pressure, heart rate, and urine output.
 - Elevated lactate and/or decreased mixed venous oxygen saturation.

- Supernormal O2 transport variables
 - Shoemaker: repay the oxygen debt.
 - CI > 4.5 L/min/m2
 - DIO2 > 600 mL/min/m2
 - VIO2 > 170 mL/min/m2
 - Achieved with fluid, colloid, blood products and vasoactive drugs.

- Supernormal O2 transport variables
- Shoemaker many studies
 - 1998: Trauma victims, critically-ill patients, and patients undergoing major operative procedures.
 - Protocol group had statistically reduced mortality, complications, duration of hospitalization, ICU duration, mechanical ventilation, and overall cost.

- Supernormal O2 transport variables
- Heyland
 - Reviewed all papers from 1980-1994.
 - Identified 7 relevant studies of 1,106 patients.
 - Performed a meta-analysis of the studies
 - Conclusions: "interventions designed to achieve supraphysiologic goals of CI, DIO2, and VIO2 did not *significantly* reduce mortality rates in all critically ill patients."

- Supernormal O2 transport variables
- Gattinoni (1995)
 - 10,726 ICU patients.
 - Three groups: Resuscitated to normal CI, supernormal CI, and to a normal mixed venous oxygen saturation (>70%)
 - Results: therapy aimed at supernormal CI or normal mixed venous oxygen saturation did not reduce morbidity and mortality.

- Supernormal O2 transport variables
- Durham (1996)
 - Randomized 58 critically ill patients.
 - Resuscitated to conventional parameters versus supernormal end points.
 - Results: No difference in incidence of organ failure or mortality.
 - (lactate levels at the end of 24 hours correlated with organ failure.)

- Supernormal O2 transport variables
- Hayes (1994)
 - 109 critically ill patients
 - 9 met supernormal O2 transport variables with volume only.
 - Remaining patients were randomized to a control group or to receive dobutamine until supernormal values were met.
 - Results: Dobutamine group had increased inhospital mortality.

- Produced from pyruvate (reversible reaction).
- With oxygen: pyruvate-->Acetyl-CoA-->Krebs cycle--38 moles of ATP
- Without oxygen: pyruvate-->lactate--2 moles of ATP
- All cells with mitochondria can remove lactate, however the liver and kidneys remove 50% and 30% respectively (Cori cycle).

- Broder and Weil (1964): first correlated increasing lactate with increasing mortality.
- Serum lactate is an indirect measure of the oxygen debt and is an approximation of the magnitude of hypoperfusion and shock.

Res

Resuscitation

- Dunham (1991)
 - Predictive value of lactate levels and mortality in hemorrhaged dogs.
- Vincent (1983)
 - 27 patients
 - 100% survival if lactate decreased > 5% in the first hour with volume resuscitation.

- Abramson (1993)
 - 76 consecutive patients; normalization of lactate (≤2mmol/L)
 - Normalization within 24 hours: 100% survival
 - **24-48** hours: 78% survival
 - > 48 hours: 14 % survival
 - Of note: 40% of nonsurvivors achieved supernormal O2 transport values and 29% of survivors did not.

Base Deficit

- It is the amount of base, in millimoles, required to titrate 1 liter of whole arterial blood to a pH of 7.40, with the sample fully saturated with oxygen at 37 degrees and a PCO2 of 40 mmHg.
- Although not directly measured, evidence exists showing lactate has a close relationship to base deficit and is a valuable indicator for shock.

Base Deficit

- Davis (1988)
 - Base deficit correlated with ongoing hemorrhage.
 - First stratified BD:
 - Mild: -2 to -5
 - Moderate: -6 to -14
 - Severe: less than -15

Base Deficit

- Dunham (1991) Dog model
 - BD correlated most closely with developing oxygen debt and mortality. However, the combination of BD with lactate was superior to either alone.
- Siegel (1990)
 - 185 blunt liver injury patients.
 - Admission BD was the single most important variable predicting mortality.

Base Deficit

- Rutherford (1992)
 - 3,791 consecutive trauma patients, retrospective.
 - Admission BD
 - <55 years (no head injury): BD<-15=sig. mortality</p>
 - >55 years (no head injury): BD<-8=sig. mortality
 - <55 years (yes head injury): BD<-8=sig. mortality</p>

- Lactate and Base Deficit are global markers of tissue perfusion
- Regions of inadequate perfusion may still exist.
- Gut mucosa: among the first to be affected during shock and the last to be restored.
 - Therefore *Gastric Intramucosal pH (pHi)* as a regional marker for perfusion.

pHi

- Measurement of the splanchnic bed as a whole.
- Estimated by gastric tonometry.
 - Gas permeable silicone balloon attached to a nasogastric tube.
 - CO2 equilibrates between gastric mucosa and saline in the balloon.
 - PH of the saline is calculated using Henderson-Hasselbach.

рНі

- Assumption: Mucosal HCO3=arterial HCO3 (has been confirmed in canine models)
- Extraneous CO2 could falsely lower the pHi.
- 30-90 minutes required to reach steady state.
 - Therefore, long turn-around time.

- pHi
 - Roumen (1994)
 - Prospective study of 15 trauma patients.
 - 7 with pHi \geq 7.4: Discharged without complications
 - 8 with pHi < 7.32 once or more within first 48 hours
 - Three developed major complications
 - Two died

pHi

- Chang (1994)
 - Prospective study of 20 multiple trauma patients.
 - pHi = 7.40 or corrected to 7.40 within first 24 hours: No mortality and 0.62 organ dysfunction/patient
 - pHi < 7.32 and without correction within first 24 hours: 50% mortality and 2.6 organ dysfunctions/patient

рНі

- Ivatury (1996)
 - Prospectively randomized 57 trauma patients
 - Primary analysis did not reach statistical significance.
 - Subgroup analysis:
 - The time for pHi optimization was significantly longer in nonsurvivors.
 - Only 3/44 patients with pHi > 7.30 within 24 hours died of MOF.
 - In 13 patients, they were unable to optimize pHi within 24 hours: 7/13 died of MOF.

Summary

- Supernormal Oxygen Transport Variables
 - ? Predictor of outcome, not an end point
- Lactate/Base Deficit
 - Global markers
 - Should be used routinely!
- Intramucosal pH (pHi)
 - Regional marker
 - Future consideration

- Future Possibilities
 - Subcutaneous PO2
 - Skin as a marker of perfusion
 - Fiberoptic tonometry
 - Real-time measurements
 - Near infrared spectroscopy

- Think other injuries
 - Mechanism of injury
 - Pneumothorax
 - Cardiac tamponade
 - Intracranial hemorrhage
 - Occult hemorrhage
 - Long bone fractures
 - Retroperitoneal
 - Etc.

The Red Trauma Light Sounds

Torn Thoracic Aorta

Dart Catching Contest

Think Mechanism of Injury

 Well Healed Scar From a Prior Femur Fracture.

High Mechanism of Injury!!

Don't Stick Your Arm Out Of The Wind The Window!

Be Careful Climbing Trees

More Wood

Only Grind The Sausage

Sunny Day, All's Well

